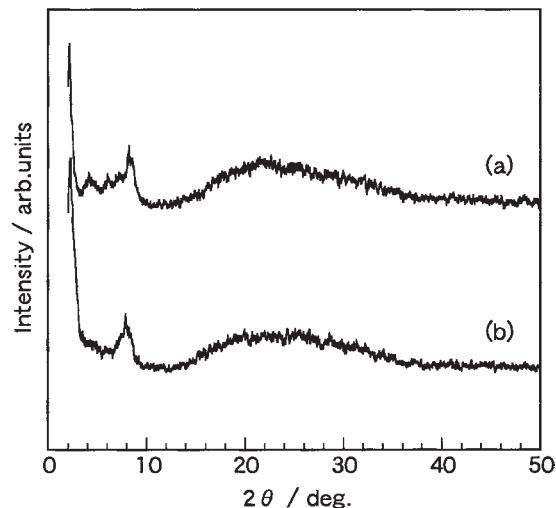


Synthesis and Magnetic Properties of Mesoporous Vanadium Oxide Sulphate

Shigemi Kohiki,* Hirokazu Shimooka, Syozo Takada, Akihiko Shimizu, Tomohiro Hirakawa, Seiji Takahashi, Hiroyuki Deguchi,[†] and Masaoki Oku^{††}

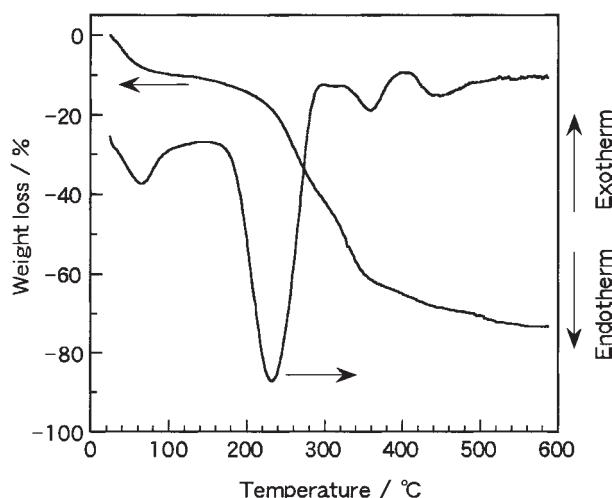
^{*}Department of Materials Science, Kyushu Institute of Technology, Tobata, Kita-kyushu 804-8550

[†]Department of Electrical Engineering, Kyushu Institute of Technology, Tobata, Kita-kyushu 804-8550

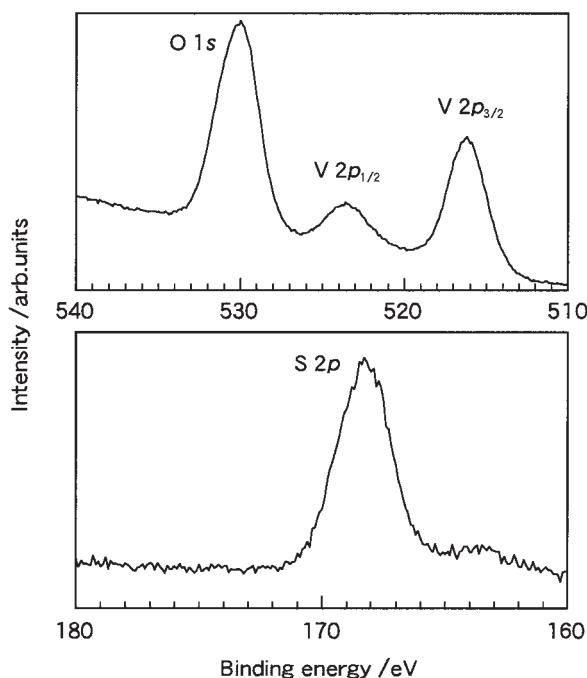

^{††}Institute of Materials Research, Tohoku University, Sendai 980-8577

(Received January 28, 2002; CL-020104)

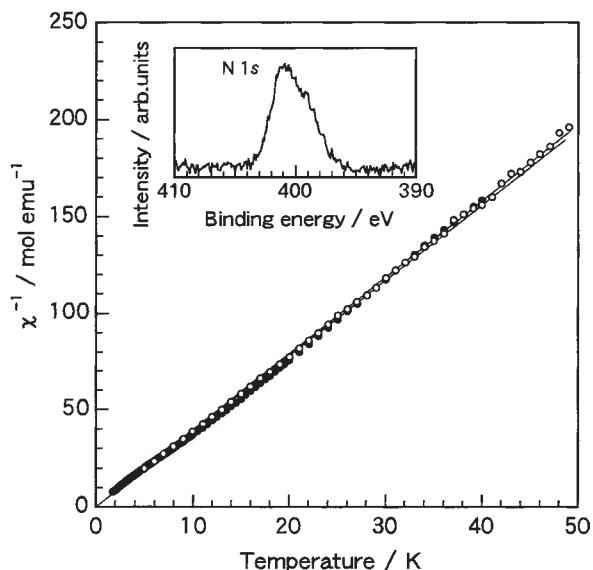
Preparation and magnetic properties of mesostructured VOSO_4 based materials, which were synthesized using liquid-crystal templating technique, have been investigated. Low temperature magnetic properties of the samples exhibited Langevin paramagnetism with an effective magnetic moment $\mu_{\text{eff}} = 1.4 \mu_B$ and a paramagnetic Curie point $\theta = 0 \text{ K}$ without any magnetic transition, which were considerably different from magnetic properties of α - or β - VOSO_4 crystals.


Since reporting of new family of porous materials (MCM-41) with periodic mesopores of 30–40 Å by liquid-crystal templating technique, various mesoporous materials have been synthesized using similar templating method.¹ Whereas mesoporous materials have attracted much attention in a viewpoint of catalyst, we take an interest in those mesoporous materials as templates for quantum dots or wires.^{2–4} Vanadium oxide sulphate has two types of polymorphs, i.e. α - VOSO_4 and β - VOSO_4 , which show different magnetic properties.^{5,6} α - VOSO_4 has a tetragonal structure with chains along c axis consisted of corner-shared VO_6 octahedra connected by corner-shared SO_4 tetrahedra. $\text{V}-\text{O}$ distance along c axis is considerably different; thus VO_6 octahedra regard as VO_5 pyramid which forms lamellar structure. It is known that the α -type crystal is ferro- or ferrimagnetic below 4 K and $\theta = -12 \text{ K}$. β - VOSO_4 has an orthorhombic structure with zigzag chains of distorted VO_6 octahedra connected by SO_4 tetrahedra to form a three-dimensional network. β - VOSO_4 shows antiferromagnetic behaviors with a Néel point $T_N = 25 \text{ K}$ due to their $\text{V}-\text{SO}_4-\text{V}$ superexchange interaction. Since both α - and β - VOSO_4 crystals have features of structural flexibility based on the connection by corner sharing of distorted VO_6 and SO_4 units, changes of magnetic properties are expected with changes of the oxidation state and local structure. Thus, if we can prepare mesostructure using crystalline or amorphous VOSO_4 by means of molecular templating technique, novel magnetic properties associated with decreasing dimension are expected. In this paper, we report synthesis and magnetic properties of mesoporous VOSO_4 based materials for the first time.

Mesoporous VOSO_4 based materials were synthesized using $\text{VOSO}_4 \cdot 3.5\text{H}_2\text{O}$ (Kishida Chemical Co., Ltd.), *n*-cetyltrimethylammonium chloride $\text{C}_{16}\text{H}_{33}(\text{CH}_3)_3\text{NCl}$ (designated as C_{16}TMA , Tokyo Kasei Kogyo Co., Ltd.) and H_2O with a molar ratio of 1 : 1.1 : 92.8. A solution obtained by mixing of the raw materials was dried at 130 °C in air. XRD pattern of a sample as dried is shown in Figure 1a. Several peaks were observed at $2\theta = 2.24^\circ$ ($d = 43.8 \text{ \AA}$), 4.16° (23.6 \AA), 6.06° (16.2 \AA) and 8.23° (12.0 \AA), while no peaks at $2\theta > 10^\circ$ were observed. This result indicates mesoscopic periodic structure of amorphous vanadium based materials formed along the template of surfactant micelles.


Figure 1. XRD patterns of a sample as dried with C_{16}TMA (a) and mesoporous VOSO_4 based material heat-treated at 300 °C in flowing N_2 (b).

Condition of thermal treatment to remove surfactant without degradation of periodic mesostructure in flowing N_2 was examined using TG-DTA as shown in Figure 2. Weight loss accompanied by endothermic reaction around 70 °C, which was attributed to desorption of adsorbed water, was observed. Other weight losses accompanied by endothermic reaction around (1) 150–290 °C, (2) 320–390 °C and (3) 410–560 °C attributed to


Figure 2. TG-DTA curves of a sample as dried with C_{16}TMA in flowing N_2 .

thermal decomposition of surfactant were also observed. This figure indicates that thermal treatment above 560 °C is necessary to remove the surfactant completely. On the other hand, from the elimination of peaks around $2\theta = 2^\circ$ in the XRD measurement, it was confirmed that the periodic mesostructure of the sample had already been damaged at 400 °C. Therefore, in this paper, characterization of a sample fired at 300 °C which still retained periodic mesostructure with XRD peaks at $2\theta = 2.30^\circ$ ($d = 38.4 \text{ \AA}$), 7.81° ($d = 12.6 \text{ \AA}$) as shown in Figure 1b was carried out, in spite of a half surfactant remained in the sample. From XPS measurement, N 1s, C 1s and S 2p peaks besides V and O peaks were observed, but no Cl peaks were observed. Moreover, as shown in Figure 3, the binding energies of V $2p_{3/2}$ and S 2p are in good agreement with that of VOSO₄ and SO₄²⁻, respectively.⁷ Hence, the partially mesoporous vanadium based material fired at 300 °C consists of amorphous VOSO₄ network and residual organic component without vanadium oxychloride.

Figure 3. O 1s, V 2p and S 2p XPS spectra of mesoporous VOSO₄ based material heat-treated at 300 °C in flowing N₂.

Figure 4 shows temperature dependence of reciprocal molar magnetic susceptibility measured by SQUID for the samples as-dried and fired at 300 °C. Number of moles of vanadium per 1 g of both samples were 1.64×10^{-3} mol and 2.82×10^{-3} mol, respectively, when a sample fired at 560 °C was assumed to be an anhydrous VOSO₄. As shown in Figure 4, both samples obey Curie-Weiss law with $\theta = 0$ K. This indicates that both the samples exhibit Langevin paramagnetism with free spins, which is different from α - or β -VOSO₄ crystal. Effective magnetic moments μ_{eff} of both samples were $\mu_{\text{eff}} = 1.41 \mu_{\text{B}}$ and $1.43 \mu_{\text{B}}$, respectively. Since the values are close to theoretical spin-only value of V⁴⁺ ($3d^1$) ($\mu_{\text{eff}} = 1.73 \mu_{\text{B}}$), oxidation number of

Figure 4. Reciprocal molar magnetic susceptibility vs temperature curves: ○ a sample as dried with C₁₆TMA; ● mesoporous VOSO₄ based material heat-treated at 300 °C in flowing N₂. Inset: N 1s XPS spectrum of the latter sample.

vanadium in both samples are considered to be V⁴⁺ ($3d^1$). However, deviation from the theoretical value is considerably larger than that of α -VOSO₄ ($\mu_{\text{eff}} = 1.69 \mu_{\text{B}}$) and β -VOSO₄ ($\mu_{\text{eff}} = 1.54 \mu_{\text{B}}$) crystals with V⁴⁺ ($3d^1$).^{5,6} The reasons are as follows; viz. a portion of oxygen of surface V-S-O network are thought to be substituted by nitrogen of surfactant due to large surface area attributed to mesostructure, which indicate existence of V⁵⁺ ($3d^0$). This assumption is based on the fact that broad peak which consists of the peaks more than two with different binding energies was observed in XPS spectrum of N 1s as shown in inset of Figure 4. In addition, this assumption may indicate that the elimination of magnetic transition in both the samples is attributed to hindrance of V-SO₄-V superexchange interaction by V⁵⁺.

References

- 1 C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, and J. S. Beck, *Nature*, **359**, 710 (1992).
- 2 K. Yamada and S. Kohiki, *Physica E*, **4**, 228 (1999).
- 3 H. Higashijima, S. Kohiki, S. Takada, A. Shimizu, and K. Yamada, *Appl. Phys. Lett.*, **75**, 3189 (1999).
- 4 S. Kohiki, S. Takada, A. Shimizu, K. Yamada, H. Higashijima, and M. Mitome, *J. Appl. Phys.*, **87**, 474 (2000).
- 5 J. M. Longo and R. J. Arnott, *J. Solid State Chem.*, **1**, 394 (1970).
- 6 R. Kierkegaard and J. M. Longo, *Acta Chem. Scand.*, **19**, 1906 (1965).
- 7 C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, and G. E. Muilenberg, "Handbook of X-ray Photoelectron Spectroscopy," Perkin-Elmer Corporation, Minnesota (1979), p 56, p 70.